Illuminating the Dark Genome to enable drug discovery from human genetics

Nucleome THERAPEUTICS

James Heward • James Smith • Lauren Owers • Brigid Davidson • Anna James-Bott • Emmanouela Repapi • Arnulf Hertweck • Basel Abu-Jamous • Stephen Harrison

Introduction Nucleome platform unlocks human genetics for drug-discovery

- Genetic evidence increases clinical success x2.6¹⁻²
- GWAS currently has the lowest increase in clinical success, likely due to uncertainty around causal gene identification
- Nucleome platform designed to solve human genetic variation with **precision & scale**, discover de-risked drug targets & provide unique insights into human disease via genetics

1 Nucleome uses principles of gene regulation to solve genetics

- Each GWAS signal must contain at least one variant altering gene **or** gene
- NuML deep learning model
 predicts variants able to alter
 gene regulation
- Variants affecting enhancers require 3D genomics to be solved

Nucleome has developed best in class 3D genome technology

- NuCC profiles showing 3D genome interactions with promoter of targeted gene. Each peak indicates a region which interacts with the promoter
- B Zoomed in plot showing NuCC and ATAC-seq
- Improvements to NuCC has enabled dramatic increase in scale of analyses.

 Datapoint = Investigated gene or SNP x cell types x replicates

Technology applied to 1000s of autoimmune SNPs and multiple key cell types/conditions

- Current focus on autoimmunity ~3000 SNPs investigated to date
- 17 cell types examined so far, including in vitro derived models of rare cell types (e.g. plasma blasts & cells) and activation models

Nucleome has developed allele specific assays for validating SNP-gene interactions

- Nucleome has proprietary allele-specific assays for measuring activity of variants, 3D interactions and gene expression
- C Validation of variant: Example of disease-linked SNP that decreases enhancer activity in myeloid and NK cells
- Validation of RNA: Effect of SNP C on expression of linked gene. Expression is lower on alternative allele in NK cells

Pipeline & outcomes

- First target (NTP-464) progressing through lead discovery
- Additional targets undergoing validation
- Use of additional Nucleome genetic analysis allows mapping of pathological mechanisms involving targets

Conclusions

- Nucleome Therapeutics uses state-of-the art gene regulation approaches to solve population genetics with precision and scale
- We are validating several first-in-class genetically-validated drug-targets and are advancing NTP-464 through lead-discovery
- Gene regulation is the key to understanding human disease. Nucleome platform has applications beyond target ID e.g. patient selection biomarker identification, drug repurposing and pathological mechanistic mapping

References

- $1.\ Nelson\ et\ al.\ (2015).\ The\ support\ of\ human\ genetic\ evidence\ for\ approved\ drug\ indications.\ Nature$
- 2. Genetics. Minikel et al. (2024). Refining the impact of genetic evidence on clinical success. Nature.
- 3. Hua et al. (2021). Defining genome architecture at base-pair resolution. Nature.
- 4. Zhabotynsky et al. (2022). eQTL mapping using allele-specific count data is computationally feasible, powerful, and provides individual-specific estimates of genetic effects. PLoS Genet.

Contact

Email: James.heward@nucleome.com

www.nucleome.com